skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fluxá, Pedro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ∼75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the optical characterization of the 90 GHz telescope. Observations of the Moon establish the pointing while dedicated observations of Jupiter are used for beam calibration. The standard deviations of the pointing error in azimuth, elevation, and boresight angle are 1.′3, 2.′1, and 2.′0, respectively, over the first 3 yr of observations. This corresponds to a pointing uncertainty ∼7% of the beam’s full width at half-maximum (FWHM). The effective azimuthally symmetrized instrument 1D beam estimated at 90 GHz has an FWHM of 0.°620 ± 0.°003 and a solid angle of 138.7 ± 0.6(stats.) ± 1.1(sys.)μsr integrated to a radius of 4°. The corresponding beam window function drops to b 2 = 0.93 , 0.71 , 0.14 atℓ= 30, 100, 300, respectively. Far-sidelobes are studied using detector-centered intensity maps of the Moon and measured to be at a level of 10−3or below relative to the peak. The polarization angle of Tau A estimated from preliminary survey maps is 149°.6 ± 0°.2(stats.) in equatorial coordinates. The instrumental temperature-to-polarization (T→P) leakage fraction, inferred from per-detector demodulated Jupiter scan data, has a monopole component at the level of 1.7 × 10−3, a dipole component with an amplitude of 4.3 × 10−3, with no evidence of quadrupolar leakage. 
    more » « less
  2. Abstract Measurement of the largest angular scale (ℓ< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 <ℓ< 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125 ( 130 ) μ K arcmin . We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 <ℓ< 125 with the first bin showingD< 0.023 μ K CMB 2 at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. 
    more » « less